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Bound and quasibound states of He2H+ and He2D+ in three dimensions have been computed by use of a
time-dependent quantum-mechanical wave packet approach for total angular momentumJ ) 0. Seven bound
states were found for He2H+ and 14 for He2D+, as compared to five for both systems by Lee and Secrest
(J. Chem. Phys.1986, 85, 6565). The potential energy surface needed for the dynamical calculation has been
computed by carrying out an ab initio calculation with coupled cluster single and double excitations with
perturbative triple excitations [CCSD(T)] employing d-aug-cc-PVTZ basis set. A many-body expansion function
proposed by Aguado et al. (Comput. Phys. Commun.1998, 108, 259) was fitted to the ab initio potential
energy values and the resulting fit has a root-mean-square deviation of 10.8 meV (0.25 kcal/mol).

1. Introduction

Rare gas dimers (X2) are known to be weakly bound
species,1-4 held together by weak van der Waals interaction.
Helium dimer, the weakest among them, has a binding energy
of only 0.957 meV.2 However, they become highly stable in
the presence of a proton. Using the afterglow technique, Adams
et al.5 observed the formation of XH+ and X2H+, when they
reacted H2 with X2

+.
Valence bond calculations for He2H+ by Poshusta et al.6

yielded a linear symmetric structure with H-He length (re) of
1.70 a0 and a vibrational frequency of 1400 cm-1. Poshusta
and Siems7 carried out a valence bond configuration interaction
(VBCI) calculation and reported a linear symmetric equilibrium
structure withre ) 1.764a0. Milleur et al.8 performed an SCF-
LCAO-MO calculation and found the linear symmetric He2H+

to be stable withre ) 1.75a0 and a potential well of 0.5757 eV
with respect to the asymptotically separated HeH+ and He. They
reported the potential energy surface for collinear He2H+ and
selected nonlinear configurations. Dykstra9 carried out self-
consistent electron pair (SCEP) and double substituted coupled
cluster (CCD) calculations, which confirmed the linear sym-
metric structure of He2H+ and showedre to be 1.746 and 1.747
a0, respectively. While studying protonated rare gas clusters,
Baccarelli et al.10 employed multireference single and double
excitations with configuration interaction (MRD-CI) calculations
with cc-PVTZ basis set to examine the H+ insertion into the
cluster from linear and nonlinear approaches. The symmetric
insertion of the proton yielded the most strongly bound
configuration for the protonated helium dimer. The equilibrium
geometry corresponded tore ) 1.75 a0 and De ) 0.52 eV.
Filippone and Gianturco11 carried out a classical molecular
dynamics study, which confirmed the symmetric linear structure
of the He2H+ complex. A systematic study of the He2H+ system
was carried out recently by Kim and Lee12 using second- and
fourth-order Møller-Plesset perturbation theory (MP2, MP4)
and coupled cluster with single and double excitations with
perturbative triple excitations [CCSD(T)] approach with

6-311++G(d,p),(3df,3pd) and aug-cc-PVxZ(x)D,T,Q) basis
sets. A summary of the findings of the different theoretical
studies is given in Table 1.

Most of the above-mentioned studies have focused on the
equilibrium geometry and well depth. Dykstra9 did compute the
potential energy values for a limited number of geometries
around the minimum, and an analytic functional fit to those
values were obtained by Lee and Secrest.13 Understandably, their
fit was accurate near the minimum and wasnot dependable for
extended configurations. Baccarelli et al.10 examined the
potential energy surface (PES) for collinear [He-H-He]+ and
[He-He-H]+ geometries and forC2V geometries of [He-H-
He]+. Although they did not report an analytic fit of their PES,
they showed that the lowest-lying excited electronic state
(charge-transfer channel) is 11.15 eV above the ground state in
the asymptotic region and much higher in the Franck-Condon
region for the equilibrium geometry of He2H+. The only other
extensive study of the system was by Kim and Lee,12 who also
examined only a limited region of the configuration space.
Therefore, there was an acute need for an accurate PES over
extended configurations of He2H+ in its ground electronic state.

To the best of our knowledge, there is only one report on the
bound states of He2H+. Lee and Secrest,13 using the PES
reported by Dykstra,9 performed variational and perturbative
calculations to determine the rotation-vibration states of He2H+

and He2D+ for total angular momentumJ ) 0, 1, 2. Five bound
states were found for both He2H+ and He2D+ for J ) 0. They
had also acknowledged that their results were less dependable
at energies far removed from the minimum. Because of their
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TABLE 1: Equilibrium Bond Length and Dissociation
Energy for He2H+ as Determined by Various Theoretical
Studies

method re (a0) De (eV)

VB6 1.70 0.96
VBCI7 1.764 0.456
LCAO - MO8 1.75 0.5757
SCF9 1.749 0.49
SCEP9 1.746 0.571
CCD9 1.747 0.5757
MRDCI10 1.75 0.52
CCSD(T)12 1.748 0.5741
present [CCSD(T)] 1.75 0.578
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abundance in interstellar medium and in ionized gases, it would
be worthwhile to compute the bound states of He2H+ and its
isotopomer.

Therefore we have undertaken to compute the ab initio PES
for He2H+ over an extended range of geometries, fitted an
analytic function to it and computed the bound states of He2H+

and He2D+ using a time-dependent quantum-mechanical wave
packet methodology. In section 2.1 we describe the method used
to calculate the potential energy data points. Section 2.2
describes the theoretical methodology used to calculate the
bound and quasibound states of He2H+ and He2D+. In section
3 we discuss the features of the PES and present the bound
state results. We summarize our findings in section 4.

2. Methodology

2.1. Potential Energy Surface.To study the structure and
stability of the He2H+ system in its ground electronic state, the
potential energy surface was generated by use of the MOLPRO
suite of programs.14 The CCSD(T) method was used with
correlation consistent basis set d-aug-cc-PVTZ to compute the
points on the PES. The dissociation energy (De) was calculated
by means of the supermolecule approach as

whereE(He), E(HeH+), andE(He2H+) represent the energies
for each species at the optimized geometries.

2.2. Bound and Quasibound State Calculation.The time-
dependent quantum-mechanical wave packet method used for
computing bound and quasibound states is well documented in
the literature.15-18 We have adopted the same for computing
the bound and quasibound states of He2H+ and He2D+. The
Hamiltonian19 for a triatomic system (A, BC) with total angular
momentumJ ) 0 in the body-fixed (BF) frame is given by

wherePR and Pr are the momentum operators corresponding
to the two Jacobi distancesR andr, respectively, andθ is the
angle betweenR and r. j is the rotational angular momentum
operator for BC[HeH(D)+], µr is the BC[HeH(D)+] reduced
mass,µR [)mHe(mH(D)+ mHe)/(mHe + mH(D) + mHe)] is the
[He,H(D)He+] reduced mass, andI is the moment of inertia of
the system defined as 1/I ) 1/(µRR2) + 1/(µrr2). The body-
fixed z axis is taken to be parallel toR, and BC lies in thexz
plane.V(R, r, θ) is the three-body interaction potential.

The initial wave packetΨ (t ) 0) is taken to be a Gaussian
located in the interaction region of the PES used in the
calculation. In terms of the equally spaced grid pointsRl and
rm alongR andr, respectively, and the nodes (θn) of a 29-point
Gauss-Legendre quadrature(GLQ)20 alongθ

where N is the normalization constant,xw(n) is the GLQ
weight, andσR, σr, and σθ are the width parameters of the
Gaussian wave packet (GWP) along the respective coordinates.
The initial location of the GWP is given byR0, r0, andθ0.

The wave functionΨ(t) at timet is obtained by time-evolving
the wave packet by use of the split-operator algorithm21 for a
large number (NT) of small time steps (∆t) as

whereT ) (PR
2/2µR + Pr

2/2µr), is the total radial kinetic energy
operator. The action of the exponential operator inT is carried
out via the fast Fourier transform (FFT) algorithm.21,22 To
evaluate the exponential involving rotational kinetic energy

Figure 1. (a) Coordinate system used for computing the PES. (b)
Potential energy profile for the rearrangement HeH+ + He f He +
HHe+ in collinear geometry.

TABLE 2: Eigenvalues (in eV) Corresponding to the Bound
States of Three-Dimensional He2H+ and He2D+ for J ) 0,
with Zero Energy Corresponding to Well-Separated He and
H(D)He+

He2H+ He2D+

variational13 TDQM/present variational13 TDQM/present

-0.2927 -0.3092 -0.3465 -0.3596
-0.1733 -0.1909 -0.2250 -0.2436
-0.0749 -0.1405 -0.2336 -0.2260
-0.0573 -0.1019 -0.1185 -0.2021
+0.0117 -0.0773 -0.0805 -0.1423

-0.0456 -0.1188
-0.0105 -0.1054

-0.0966
-0.0667
-0.0562
-0.0409
-0.0345
-0.0181
-0.0023

e-iĤ∆t/p ) e-iV∆t/2pe-ij2∆t/4Ipe-iT∆t/pe-ij2∆t/4Ipe-iV∆t/2p + O(∆t3)
(4)
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2
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2

-
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2 ] ×
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2
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2 ]} (3)
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operator, e-ij2∆t/4Ip, we have used the discrete variable repre-
sentation (DVR)23,24 along with the GLQ.

The power spectrumI(E) is obtained by Fourier-transforming
the autocorrelation functionC(t) ) 〈Ψ(0)|Ψ(t)〉:

We utilized the time-reversal property ofΨ(t) to calculate the
autocorrelation function at time 2t by evaluating

from the wave function at timet. This approach25,26 allows us
to increase the energy resolution (∆E ) 2πp/τ) by a factor of
2 by effectively doubling the total propagation timeτ.

The eigenfunctionsΨ(En) for the system are calculated by
projecting the time-evolved wave function onto the desired
eigenstate (n) of energyEn:

As the wave packet moves forward in time, the fast-moving
components approach the grid edges ahead of the slow-moving

Figure 2. Potential energy contour diagram for the ground electronic state of He2H+ in (R, r) space for different values ofθ indicated in the panel.
Successive contours differ by 0.2 eV, with zero energy corresponding to HeH+ + He.

I(E) ) |∫0

∞
C(t)eiEt/p dt|2 (5)

C(2t) ) 〈Ψ*( t)|Ψ(t)〉 (6)

Ψ(En) ) ∫0

∞
Ψ(t)eiEnt/p dt (7)
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ones. Hence, to get rid of the possible unphysical wraparounds
from the edges of a finite sized grid, we multiplied the wave
function at each time step by a damping function:27,28

where Xmask is the point at which the damping function is
initiated along the channel coordinateX (R or r) and
∆Xmask() Xmax - Xmask) is the width of X over which the
function decays from 1 to 0, withXmaxbeing the maximum value
of X.

3. Results and Discussion

3.1. Potential Energy Surface.As mentioned above, we
computed the points on the ground-state PES of He2H+ by the
CCSD(T) method with d-aug-cc-PVTZ basis set. Potential
energy values were calculated for the [He-H-He]+ angle
γ ) 0(30)180° and for the two He-H distancesR1 andR2 )
1(0.2)10.0a0. The variables are defined in Figure 1a.

An analytic functional fit to the computed ab initio potential
energy values was obtained by the many-body expansion method
of Aguado et al.29 The potential energy function for a triatomic
system is written as

The diatomic potential for AB is given by

Similar expressions hold for BC and CA.
Rydberg type variablesFi are given by

The three-body termVABC
(3) is written as

Compared to the computed ab initio potential energy values,
the fitted surface gave a root-mean-square deviation of 10.8 meV
(0.25 kcal/mol).

The resulting potential energy profile for the collinear
configuration is shown schematically in Figure 1b. In Figure 2
we plot the potential energy contour diagram in the (R, r) plane
for the various values ofθ. Figure 3a shows the potential energy
contours as a He atom approaches HeH+ in its equilibrium
geometry, and Figure 3b depicts the contours for the approach
of a proton toward He2 in its equilibrium geometry.

As was shown in Table 1, the location and depth of the well
computed by us are comparable to the results reported by
Dykstra.9 Unfortunately, we are not able to make a detailed
comparison of our PES with that of Dykstra, as he did not report
all the energy values. For the limited number of geometries for
which the potentials are reproduced in ref 9, we have compared
our potential energy values with his and found a standard
deviation of 21.08 meV, with the largest deviations being+45.3
and-47.2 meV. The analytic fit reported by Lee and Secrest

gives only a limited amount of information and is known to be
less reliable as one moves away from the minimum.

3.2. Bound and Quasibound States Calculation.The initial
wave function was centered at (R0, r0, θ0)) (4.00 a0, 1.8 a0,
0.212754 rad) and the width parametersσR ) 0.30 a0, σr )
0.25a0, σθ ) 0.20 rad. The time evolution of the wave function
was carried out on a 64× 64 × 29 grid in (R, r, θ) for a total
of 32 768 time steps with each step∆t ) 0.2155 fs. The
damping function usedRmask ) 7.48 a0, rmask ) 7.48 a0. The
autocorrelation function was computed with the Simpson
integration and Fourier-transformed by use of the FFT algorithm.
The resulting eigenvalue spectrum for three-dimensional He2H+

is plotted in Figure 4a, with the inset showing only the bound
states. There are a total of seven bound states and their energies
are listed in Table 2. These are to be compared with the five
bound states reported by Lee and Secrest13 using a variational
calculation and a slightly different PES. The currently computed
zero-point level is lower than that reported by Lee and Secrest
by 21.7 meV. For the purpose of quantitative comparison we
report the energy levels (in reciprocal centimeters) relative to
the zero-point energy, as was done by Lee and Secrest,13 in
Figure 5a. These authors had pointed out that the energy levels
did not correspond to any particular normal mode and that they
could be identified as a linear combination of modes, because

Figure 3. (a) Potential energy contour diagram for the approach of a
He atom toward HeH+ in its equilibrium geometry. Successive contours
differ by 0.2 eV. (b) Potential energy contour diagram for a proton
approaching He2 in its equilibrium geometry. Successive contours differ
by 0.2 eV.

f(Xi) ) sin[π
2
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Figure 4. Eigenvalue spectra for (a) He2H+ and (b) He2D+ in three dimensions forJ ) 0. The insets show the bound states.

Figure 5. Bound-state energies computed from the present study along with those reported by Lee and Secrest13 for (a) He2H+ and (b) He2D+.

Bound and Quasibound States of He2H+ and He2D+ J. Phys. Chem. A, Vol. 107, No. 37, 20037129



of the floppiness of the molecule. The light H nucleus bound
between the two heavy He nuclei makes large-amplitude
motions. It is clear that the first excited state from our
calculations is almost identical to that of Lee and Secrest.13 The
deviations become larger as we go higher in energy. This is
not surprising because Lee and Secrest13 used a normal mode
expansion for fitting the PES and the data available away from
the well region were limited and the fit was less reliable as one
moved away form the minimum. Our PES covers a much wider

region in configuration space and has been fitted analytically
with an rms deviation of 10.8 meV. Because of the anharmo-
nicity of the potential, we do find a larger number of bound
states than Lee and Secrest.13

Probability density contours of the eigenfunctions corre-
sponding to the lowest four bound states in both (R, r) and
(R, θ) coordinates, superimposed on the potential energy con-
tours for the system, are reproduced in Figure 6. The lowest
energy eigenfunction in Figure 6a could be assigned the quantum

Figure 6. Probability density contours for the lowest four bound states of He2H+, superimposed on the potential energy contours for the system.

7130 J. Phys. Chem. A, Vol. 107, No. 37, 2003 Panda and Sathyamurthy



numbers (nR, nr, nθ) ) (0, 0, 0). The eigenfunction in Figure
6b is predominantly that of the first excited vibrational state
(1, 0, 0). With an increase in energy, the nodal pattern becomes
complicated and it becomes difficult to assign (nR, nr, nθ). This
is understandable because of the floppiness of the system, as
discussed above.

Although we have not analyzed the eigenvalue spectrum
above zero energy, it is clear that it would correspond to the
quasibound states and that the He2H+ system can be expected
to be rich in dynamical resonances, akin to HeH2

+.16

The eigenvalue spectrum of He2D+ plotted in Figure 4b
reveals 14 bound states, when compared to seven for He2H+.
Interestingly, Lee and Secrest13 reported only five bound states
for He2D+ also. A quantitative comparison of the eigenvalues
obtained by our study against those of Lee and Secrest is
presented in Table 2 and in Figure 5b. Once again we have
used the zero-point energy level as zero energy for comparing
the two sets of results. While the first vibrationally excited state
on our ab initio PES is in near quantitative agreement with that
reported by Lee and Secrest, the differences between the two
sets of results increase with increasing energy. On the basis of
kinematic considerations one would have expected a larger
number of bound states for He2D+ than for He2H+. That is what
we have found with our TDQM calculations.

Ideally, one would have liked to repeat our TDQM calcula-
tions with the Lee-Secrest PES to identify the source of the
discrepancy between the results obtained on the two surfaces.
Unfortunately, the Lee-Secrest PES is not available in a readily
usable form. An alternative is to compute the bound states
supported by the newly computed ab initio PES by an alternative
approach such as BOUND30 or DVR.31 But considering the
success of the TDQM method for a variety of other systems,18

we feel that this is not needed, particularly because (i) the larger
number of bound states obtained for He2H+ and He2D+ on our
surface can be readily attributed to the anharmonicity of the
PES and (ii) the larger number of bound states for He2D+ than
that for He2H+ on our surface is what one expects from
kinematic considerations.

4. Summary and Conclusion

We have reported a CCSD(T) potential energy surface for
the ground state of three-dimensional He2H+ and also an analytic
fit to it with an rms deviation of 10.8 meV (0.25 kcal/mol).
The computed eigenvalue spectrum for the system forJ ) 0
shows seven bound states for He2H+ and 14 for He2D+,
compared to five reported earlier for both the systems. We have
found that there is a large number of quasibound states that
would suggest that He2H+ and He2D+ systems would be rich
in dynamical resonances.
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